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Synopsis 

A model relating the steady-shear melt viscosity and elasticity to the molecular weight distribution 
in HDPE and polystyrene melts has been extended to predict the dynamic viscosity, modulus, and 
loss modulus. Limitations in the model as applied to the dynamic properties are discussed. The 
model is also applied to the transient response of stress growth during steady shearing. This ap- 
plication is considered useful because it may help describe nonsteady-state flow of polymer melts 
in short dies and cyclic operations as employed in commercial molding equipment. 

INTRODUCTION 

The dynamic properties of melts are useful in the characterization of polymer 
systems. The small-amplitude dynamic properties describe the elastic and 
viscous properties of a polymer melt and give a data base from which the relax- 
ation spectrum can be calculated. From the relaxation spectrum, in turn, all 
linear viscoelastic behavior can be calculated. It is widely believed that the 
molecular weight and its distribution determine the terminal part of the relax- 
ation spectrum and the small-amplitude dynamic properties; but up to now the 
detailed connection has not been made. 

Transient experiments, such as the stress overshoot phenomenon in which 
the stress growth is measured at constant shear rate, are useful because they 
correspond more closely to conditions encountered in commercial processes than 
do the usual steady-state shearing experiments. For example, many commercial 
extrusion processes in injection and blow molding are operated with very short 
dies in which the steady-state shearing condition is not applicable, or the pro- 
cesses may be cyclic and of short duration. 

The description of non-Newtonian flow properties has taken forms ranging 
from rather specific1-" molecular models to continuum capable of 
providing information on a wide variety of flows. In general, the continuum 
approaches have drawbacks because certain material-dependent parameters 
must be determined experimentally for each new sample. Network theories, 
such as that of Lodge,7 also do not provide specific molecular information. 
Molecular models serve a supplementary role by accounting for the change in 
the material functions with molecular structure. Of the molecular models de- 
scribing the response of polymer melts in simple shearing flow, Graessley's' has 
been the most successful. However, because his formulation is in terms of im- 
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plicit functions, the effect of molecular weight distribution, MWD, on viscoelastic 
response is not a direct one. 

Recently, I proposed a model relating the viscoelastic response of polyethylene 
and polystyrene melts to the MWD.8s9 The model assumes that the relaxation 
spectrum is progressively truncated with an increase in shear rate under steady 
shearing flow conditions. The maximum allowed relaxation time T~ (the re- 
laxation time where the spectrum is truncated) is assumed to be only a function 
of shear rate: T,. = KI?, where K = 2. The truncation of the relaxation spec- 
trum, for a given molecular weight species M at any given shear rate results in 
the relaxation spectrum being essentially equivalent to that of a lower molecular 
weight homolog M c ( + )  a t  zero shear (its relaxation spectrum not being trun- 
cated), since the primary effect of molecular weight on the relaxation spectrum 
is only to extend the terminal relaxation portion. In other words, at  this given 
shear rate the molecular species of molecular weight M acts as though i t  were 
of molecular weight M,.. The model was termed the “partition” model since all 
molecular species are partitioned by M,. . Because the shear-rate dependence 
of the relaxation spectrum was assumed to be only the effect of truncation, 
zero-shear (linear-viscoelastic) relationships for the melt viscosity, steady-shear 
elastic compliance, and first normal stress difference were used to c a l c ~ l a t e ~ ~ ~  
these properties as a function of shear rate by including the shear-rate truncation 
of the relaxation spectrum. 

Because my model successfully predicts the viscous and elastic responses of 
both polystyrene’O and polyethylene melts undergoing steady shearing flow, I 
have now extended its application to see how well it describes oscillating and 
transient phenomena. The comparison of predicted and experimental small- 
amplitude oscillatory data tests the ability of the model to predict the relaxation 
spectrum from the MWD. I have also examined limitations to the predictions 
of this model from MWD data. Stress overshoot, though not an automatic 
consequence of the model, has been interpreted in terms of the model. 

EXPERIMENTAL 

The samples were anionically polymerized polystyrene standards obtained 
from ArRo Laboratories; two high-density polyethylene (HDPE) samples pre- 
viouslyg reported on; and Tenite 3340, the HDPE used by Chen and B0gue.l‘ 

The gel-permeation chromatography data were obtained a t  135°C with tri- 
chlorobenzene as solvent on a Waters model 200 instrument having four styrogel 
columns with the following porosities: 106, lo5, lo4, and 103 A. The instrument 
calibration has been described.s Spreading corrections were applied’O to the 
MWD of the polystyrene samples. MWD data are given in Table I. 

TABLE 1 
MWD of Samples Used in This Study 

Sample a,, x lo-:% 37(<,, x 10--’ mz, x 10-3 m,, lmn 

PS-1 158 179 1.13 
PS-2 86 96 1.11 
HDPE Sample A 12.1 158 732 13.1 
HDPE Sample B 28.2 148 559 5.2 
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RESULTS AND DISCUSSION 

Calculation of the Dynamic Viscosity Storage and Loss Moduli 

Relationships have been formulatedgJO to relate the relaxation spectrum to 
MWD as 

where 
c-1- 
i = l  i=C 

mw* = C hiMi + M,. c hi 

and T ,  = 1.4 X Mc3.33 for HDPE at 190°C. Also, 

where T ,  = 1 X lopz1 M,3.84 at 190°C for polystyrene. If these relationships are 
correct, the linear-viscoelastic functions (q', G', and G") for small-amplitude 
oscillating shear should be predictable'' from the well-known linear-viscoelastic 
relationships between the relaxation spectrum and q', G', and G". 

Figures 1 and 2 give Graessley's experimental dynamic data for two previously 
studied HDPE samplesg and my model's prediction. The good agreement be- 
tween the experimental and predicted steady-shear viscosity and first normal 
stress difference as a function of shear rate lends credence to the relationship 
in eq. (1) for H ( T ) ,  from which the dynamic data were calculated. As no further 
adjustable parameters were used to predict the dynamic data, it can be concluded 
that the steady-shear and dynamic data can be interconverted. This verifies 
the transformation between the steady-shear viscosity and dynamic viscosity 
reported as an approximation of Graessley's model by Cote and Shida,':' in which 
the MWD was not explicitly used. 

As a first-order approximation of Graessley's theory Cote and Shida give 

H(7)1,=2/ i  = dq/d(Z/ j . )  (3) 

The present semiempirically derived model yields the relation 

H ( 7 )  I r= l .~ /+  = dq/d(l.7/+) (4) 

Figures 3 and 4 compare the experimental data of Porter and Prest14 at  192°C 
for G', G", and N1, with the predictions at  190°C from the MWD of the nar- 
row-MWD polystyrene with R,, = 97,000. The coefficient, a, obtained from 
the average of values calculated from JF summarized in Graessley's review15 on 
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Fig. 1.  The dynamic properties of HDPE sample A. The squares, circles, and triangles are ex- 
perimental data of Graessley for ~ ’ ( o ) ,  G” (w) ,  and G’(w) at 190°C. The solid lines are predicted from 
the model. 

the entanglement concept, was determined to be 1.5 X as compared to 1 
X reported previously,’” based only on the data of Prest.16 Agreement 
is very good at  the lowest frequencies, but becomes progressively worse at  higher 
frequencies. However, since the predictive model is based on idealized responses 
to steady shearing flow, which is dominated by the longest relaxation times, the 
poor agreement a t  high frequencies is understandable. These comparisons 
graphically illustrate that the “partition” model is limited to predicting properties 
based on terminal relaxations, and consequently is incapable of making pre- 
dictions at  high frequencies, where relaxation mechanisms associated with the 
chain lengths of the order of the entanglement length become important. The 
prediction for the HDPE samples given earlier was more successful because of 
polydispersity; the longer relaxation times tend to dominate the frequency 
range. 

The polystyrene sample represented in Figures 3 and 4 was of relatively low 
molecular weight, and as such displayed an almost nonexistent plateau region. 
Figure 5 compares predicted and Graessley’s experimental data at  141.6OC for 
a narrow-MWD polystyrene material of Mw = 179,000. The constant K in the 
zero-shear viscosity relation was determined to be 3.98 X lo-” from viscosity 
data on this material at  141.6OC. The proportionality constant a between the 
relaxation time and the molecular weight to the 3.84 power, was calculated based 
on the temperature variation of the relaxation time T = v o / p T  using 1.5 X 
for a and 1.585 X for K at 190OC. A t  141.6”C, a was calculated to be 4.2 
X = 97,000 
material. However, the “partition” model predicts both an apparent shift of 
the terminal relaxations to longer times and an overall broadening, which arises 

Figure 5 shows that the agreement is not as good as for the 
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Fig. 2. The dynamic properties of HDPE sample B. The MWD and steady-shearing data for 
samples A and B have been reported elsewhere. The squares, circles, and triangles are experimental 
data of Graessley for ~ ’ ( w ) ,  G ’ (w) ,  and G ” ( w )  a t  190°C. The solid lines are predicted from the 
model. 

quite naturally out of the model’s assumption that each molecule exhibits not 
only the longest relaxation mechanisms characteristic of its molecular weight, 
but also all relaxation mechanisms characteristic of lower molecular weight ho- 
mologs. 

The somewhat higher value for G’ and G” in the plateau zone can readily be 
appreciated from a comparison reported earlierlO between the relaxation spec- 
trums calculated from the MWD and from the experimental dynamic data of 
Prest16 for the Mu, = 411,000 Pressure Chemical standard. The experimental 
data more closely approximate the “box” distribution. The predicted and ex- 
perimental data agree at  the terminal end, but the plateau region is not realized 
for the spectrum until smaller relaxation times for the predicted. Further, and 
perhaps more important, the ultimate plateau H ( T )  is larger for the predicted 
spectrum. I believe that this variance reveals a fundamental limitation of the 
“partition” model as formulated. 

This problem is brought into sharper focus by considering the prediction of 
H ( T )  in terms of shear rate. Rearranging eq. (4) gives 

This relation, along with the predicted’o power-law exponent of -0.885 for 
polystyrene, shows that H ( T )  increases indefinitely with decreasing T, with no 
true plateau region. It is emphasized that polyethylene does not have this 
problem, as the predicted power-law exponent between v and i. is ca. -1.0. 
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Fig. 3. The first normal stress difference N1 as a function of i. and the dynamic storage modulus 
G' as a function of w for PS-2. The solid lines represent experimental data for the g,,, = 97,000 
Pressure Chemical polystyrene standard at 192°C. The closed squares and circles are points pre- 
dicted from the model. 
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Fig. 4. The loss modulus G" as a function of u). The experimental data a t  192°C of Prest and 
Porter (Ref'. 14) for the mu, = 97,000 Pressure Chemical polystyrene standard (PS-2) are represented 
by the solid line and the solid circles with connecting dashed lines are the model's predictions. 

However, because no narrow-MWD samples have been compared, it is difficult 
to judge this point. In order for eq. (5) to more faithfully mimic the relaxation 
spectrum, the limiting power-law exponent for polystyrene would have to be -1.0. 
In terms of the steady-shear viscosity for the narrow-MWD polystyrenes, the 
area of apparent conflict is the power-law region, where the power-law exponent 
of 0.885 does not seem unreasonably low. In fact, it is lower than has been es- 
timated.I7 However, an even more fundamental reason for the variance may 
apply. Namely, that in making the calculation of eq. (5), I have assumed that 
the power-law region continues indefinitely as the shear rate increases and the 
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Fig. 5. The dynamic storage and loss moduli as a function of w for the Pressure Chemical poly- 
styrene standard having a,,, = 179,000 (PS-1). The solid and dashed lines are predicted from the 
present model, and the circles and triangles are experimental data from Graessley and Martin a t  
141.6”C for  the dynamic loss and storage moduli, respectively. 

largest allowed relaxation time decreases. Though the approximation may be 
valid for HDPE, where the entanglement molecular weight is quite low (ca. 4000), 
this is not a good approximation for polystyrene, where the entanglement mo- 
lecular weight is approximately 30,000. The partition model obviously breaks 
down a t  this point. 

While the reasons for the variance between the experimental and predicted 
dynamic data in the plateau region have been discussed, the modification of the 
“partition” model, in a manner consistent with the variety of data presented, 
is not obvious. 

Stress Overshoot 
Stress overshoot at the onset of steady shearing flow has recently18J9 been used 

to evaluate the different general continuum models. Evaluations of selected 
models are given in a review by Spriggs et a1.20 and by Chen and Bogue.” The 
Chen and Bogue approach gives reasonable agreement with experimental data. 
The more specific network-rupture model of Tanner21 has also been shown to 
qualitatively account for the overshoot phenomenon. 

The present model makes no obvious predictions regarding the stress-over- 
shoot phenomenon. The maximum allowed relaxation time T~ at any shear rate 
i. is assumed to be determined by the relation 

T ,  - i. = const (6) 
This relationship gives the largest active relaxation time for the steady-shear 
state, but not the rate of deactivation of the longest relaxation mechanisms in 
the approach to the steady state. To address this problem I will assume the 
time-dependent relaxation spectrum at the shear rate + as 

where H ( T , ~ )  is the relaxation spectrum at zero shear rate and 
H ( ~ , j / , t )  = H(7,O) exp(-t/T,) + H(T,+)  [l - exp(-t/~,)] 

H ( T , + , ~ )  = H ( T , O )  for all T 5 T~ ( 7 )  

for all T > T ,  (8 )  
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Equation 8 reduces to 

H(7,i .J)  = H(T,O) exp(-t/T,) for all T > T~ (9) 

since in the steady state for T > T ~ ,  H(T,+) = 0. Equation 8 gives the time-de- 
pendent relaxation spectrum as a decay of the relaxation spectrum in the initial 
state H(T,O) and a growth to the new state, H(T,+),  with time constant 7,. Using 
the relations (7) and (9) together with the generalized linear for stress 
development at  constant rate of strain, we get 

a(i.,t) = i. J T C  H(T,O) [l - exp(-t/~)] d7 for all T 5 T ,  (10) 

and 

To  compare predictions from this equation with the experimental data of Chen 
and Bogue,18 certain parameters in eq. (1) must be evaluated at 160OC for H ( T ) .  
The constant in the zero-shear relation used at  this temperature was calculated 
from that9 at  190°C and an activation energy23 of 6.3 kcal/mole. The zero-shear 
constant was calculated to be 8.11 X 1O-ls. The relation between M,, the largest 
molecular weight homolog still undergoing Newtonian flow at +, and shear rate 
was determined as described earlier8 to be 

M ,  = 490,000 +-o~300 (12) 

The proportionality constant a between the relaxation time and M:3.:3:3 was 
evaluated from the normal stress data of Chen and Bogue18 as described else- 
where.g 

Figure 6 compares the experimental data for stress development of Chen and 
Boguell at 16OOC and those predicted from the MWD using my model and the 
Bogue model.11 The agreement for the position of the peak maximum at the 
two highest shear rates is moderately good. The quantitative comparison is not 
quite as good as that obtained from the Bogue model at  the higher shear rates, 
but substantially better at  the lowest shear rate. In fact, at the lowest shear rate 
my model does not predict an overshoot, in agreement with the experimental 
findings. The overshoot at  the higher shear rates and the lack thereof at  the 
lowest shear rate is a result of the competition as a function of time between the 
deactivation of relaxation mechanisms having 7 > T ,  and the contributions of 
these relaxations to the stress as a function of time as predicted by linear-vis- 
coelastic theory. 

The first normal stress difference growth N(+,t)  can also be calculated from 
the linear-viscoelastic relation24 by the inclusion of a time-dependent relaxation 
spectrum as given in eqs. (7) and (9) as 

and 
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Fig. 6. Stress development a t  160°C a t  the onset of steady shearing a t  constant shear rates. The 
solid curves represent the experimental data of Chen and Bogue (ref. l l ) ,  the dashed line is that 
predicted by the “partition” model, and the curve of alternating dashes and dots is that predicted 
by the Bogue (ref. 11) model. 
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Fig. ’7. First normal stress difference development curves a t  the onset of shearing a t  160°C. The 
solid line is the experimental data of Chen and Bogue (ref. 18), the dashed line that predicted by 
the “partition” model, and the alternating dashes and dots the Bogue (ref. 18) model. 



1288 BERSTED 

Figure 7 compares the experimental data of Chen and Bogue’8 with predictions 
of the Bogue model and those of eq. (14). Neither the Bogue model nor the 
predictions of eq. (14) quantitatively agree with the experimental data. However, 
certain features of the experimental data are reproduced using the above equa- 
tion. First, the peak maximum for the normal stress difference is shifted to 
longer times relative to that in the shear-stress overshoot for both the predicted 
and experimental curves. Additionally, the overshoot peak is calculated to be 
broader for the normal stress overshoot than it is for the stress overshoot. This 
is qualitatively in agreement with the experimental data. 

From the above comparisons, I conclude that the stress-overshoot phenomenon 
can be described reasonably well by the “partition” model. However, this de- 
scription is not an automatic consequence of the model, because a new as- 
sumption about the time dependence of the relaxation spectrum must be made. 
I t  is interesting to  note that both the predictions of my model and the experi- 
mental data on stress overshoot suggest that the time to reach the stress maxi- 
mum t,, is such that t,? N const total strain. This observation is accounted 
for quite naturally in the network-rupture model of Tanner.21 For this reason, 
and because Tanner’s model lends itself to the description, it seems a reasonable 
goal to combine the models so that the memory function of the “partition” model 
can be included in the network-rupture theory. 

CONCLUSIONS 

The dynamic moduli for HDPEs having relatively broad MWDs are predict- 
able from MWD data obtained by gel-permeation chromatography. Predictions 
of the dynamic moduli for narrow-MWD polystyrenes, however, demonstrate 
limitations of the “partition” model as presently formulated. Predictions in 
the terminal region agree quite well with experimental data, but agreement be- 
comes worse in the plateau and transition regions. These limitations were not 
perceived in the steady-shear behavior of these materials, since the steady-shear 
resonses depend heavily on the terminal relaxations. 

The  inability to correctly predict the dynamic moduli in the plateau and 
transition regions is not surprising, because relaxations depending on chain 
segments of the order of the entanglement length become important in these 
regions. My model is based on non-Newtonian behavior in steady shear and 
is therefore an entanglement model, which is oblivious to the relaxation times 
that  depend on short segments having lengths less than interentanglement 
spacings. 

Although the stress-overshoot phenomenon can be described moderately well 
by my model, the connection is not a direct one, and some serious differences 
between the predictions and the experimental data remain. Additionally, de- 
spite the somewhat arbitrary nature of the time-dependent relaxation spectrum, 
the concepts I have discussed may prove useful in the analysis of commercially 
interesting processes such as extrusion through dies of low LID,  where steady- 
state conditions do not prevail. 

I would like to  express my appreciation to  Professor D. C. Bogue for the  provision of the HDPE 
sample, for which published results on the overshoot phenomenon were available. I am also deeply 
indebted to  Professor W. W. Graessley for supplying the dynamic rheological data on the polystyrene 
and polyethylene samples used, as  well as  for many useful discussions with him. 
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